Disclosures

• No relevant financial relationship exists with any of the presenters in this presentation and there are no conflicts of interest in this presentation.
Course Objectives

• 1. Be able to describe the different types of and uses for mechanical support devices noted above.
• 2. Be aware of important safety measures for PTs related to each device.
• 3. Be able to state indications and contraindications to mobility for each device.
• 4. Provide cases of patients that have been successfully mobilized using this equipment.
• 5. Open up discussion for a round table to discuss what is working at different hospital systems that are mobilizing with these machines.
Subclavian Intra-Aortic Balloon Pump

Meghan Lahart PT, DPT, CCS
University of Chicago Medical Center
Email: meghan.lahart@uchospitals.edu
Subclavian Intra-Aortic Balloon Pump
What is an IABP?

• First described as used for patients with cardiogenic shock
• Typically placed in the femoral artery which requires bedrest and significant risk for lower extremity ischemia.
• Indicated for patients with
 – refractory angina pectoris
 – post-cardiopulmonary bypass shock
 – temporizing complications of percutaneous coronary intervention
 – complications of myocardial infarction refractory to pharmacologic therapy
Patient Selection for Ambulatory IABP

- Used in patients who benefit from IABP therapy but need ambulatory and long-term support
- Requires ICU setting
- Used as
 - Bridge to transplant: status 1a
 - Bridge to MCS
 - Bridge to determination
 - Bridge to recovery
 - Post-MI or Post ECMO
 - After high-risk surgery
What does an IABP do?

- Increases myocardial oxygen perfusion while increasing cardiac output
- Increasing cardiac output therefore increases coronary blood flow which then increases myocardial oxygen delivery
- Balloon sits in aorta
 - Actively deflates during systole: increases forward blood flow by reducing afterload
 - Actively inflates during diastole: increases blood flow to coronary arteries via retrograde flow
IABP Console

• Computer-controlled mechanism that inflates the balloon with helium linked to an electrocardiogram or pressure transducer at the distal tip of catheter
• Helium has low viscosity and allows it to travel quickly through long connecting tubes as well as lower risk of causing embolism if balloon ruptures.
• IABP augmentation can be set at 1:1, 1:2, 1:3
• Typically when using as bridge to transplant or LVAD will use a 1:1 augmentation
IABP Console Screen
Considerations and Safety Measures

- Limit shoulder flexion on side of IABP placement to 90 degrees
- Leveling the arterial line connected to IABP when ambulating
- Ensuring that the physical therapist has undergone training so as to leave ICU unit with patient
- Never take patient into an area where there are no outlets to plug console in if battery starts to die
- Checking battery life frequently
Subclavian IABP UCMC

- Russo et al. JTCVS 2012;144:951-5
- 52 patients in last 3 years (duration 2-100 days)
 - 34/37 successful bridge to transplant
 - 3 required MCS due to worsening CHF
 - 9 optimize to MCS. All implanted
 - 6 planned slow wean to recovery after high-risk cardiac surgery in low EF patients. 5 discharged
- Lessons learned
 - 90% showed decrease in PCWP, increased CO, increased BP allowing up-titration of medication, renal improvement
 - Need stable rhythm
 - 1CVA with long term deficit during pumping – poor management of driveline rupture
Subclavian IABP Vanderbilt

- Umakanthan et al. JTCVS 2012:143;1193-7
- 18 patients 2007-2010 (duration 5-63 days)
 - >50% contraindications to traditional LVADs
- Subclavian Hemashield graft, daily/aggressive ambulation
- 13/18 successful bridge to transplant
 - 3 too sick for LVADs
 - 1 MI
 - 1 arrhythmia
• Estep et al. JACC HF 2013:V1;No 5
• 50 patients 2007-2012 (duration 4-152 days; median 18)
• Subclavian percutaneous with sheath
 – Minimal ambulation
 – Increased vascular complications due to approach
• 44% required re-positioning, 20% exchange
• 42/50 successful bridge to transplant
 – 4 died and had contraindications for LVADs
 – 3 required increased support
 – 1 needed repositioning to femoral location
Axillary IABP Case
ECMO

Cori Shank PT, CCS
Indiana University Health Methodist Hospital
Email: cshank1@iuhealth.org
What is ECMO?

- Extracorporeal Membrane Oxygenation (ECMO) or Extracorporeal Life Support (ECLS)
- The use of mechanical devices to temporarily support heart and/or lung function during cardiopulmonary failure, allowing organ recovery or replacement
PATIENT SELECTION

• Must be a reversible process.
• Patient should be placed on ECMO within first 5 days.
• Have an “exit strategy”.
 • Bridge to recovery
 • Bridge to transplant
 • Bridge to implantable device – LVAD
• Goal of ECMO?
Types of ECMO Support

• Veno-arterial (VA) ECMO
 – Blood is removed from a vein, circulated through a blood pump and artificial lung, and returned to an artery
 – Supports heart and lungs

• Veno-venous (VV) ECMO
 – Blood is removed from a vein, circulated through a blood pump and artificial lung, and returned to a vein
 – Supports lungs only
Indications for VA-ECMO

• Cardiogenic shock with inability to oxygenate due to
 • Acute MI
 • Cardiac arrest
 • Decompensated heart failure
 • Post-partum cardiomyopathy
• Post-cardiotomy shock
• Bridge to durable VAD/TAH support or transplant
• Absence of non-reversible organ failure
 • Neurologic
 • Underlying end-stage malignancies
V-A ECMO Cannulation

- Surgeon
- At bedside or in OR
- Central cannulation
- Femoral cannulation
Indications for VV-ECMO

- Potential reversible lung insult
- Condition consistent with ARDS
- Mechanical ventilation < 7 days
- Profound hypoxemia or hypercapnea
- Bridge to lung transplantation
- Absence of non-reversible organ failure
 - Neurologic
 - Underlying end-stage malignancies
V-V ECMO Cannulation

- Surgeon
- At bedside or in OR
- Avalon Catheter – Bi-caval catheter inserted into the right internal jugular vein.
 - Blood is removed from superior and inferior vena cava and returned to the right atrium directly at the tricuspid valve
- Femoral vein-Internal Jugular cannulation
ECMO CIRCUIT

Main components:
• Tubing
• Gas exchange
• Blood pump
• Heat exchange
ECMO CIRCUIT
ECMO CIRCUIT
Patient Management on ECMO

- Lots of info! How long do I have?
- Support gas exchange and allow lungs to rest
- Anticoagulation...risk for bleeding!
- Prophalactic Antibiotics
- Diuretics
- Appropriate sedation and anxiety control
- Neuro checks
- Limb perfusion
Target Guidelines
The Red Book

- Temp
- pH
- pCO2
- pO2
- Hgb saturation (SpO2)
- Hgb
- INR
- Platelets
- ACT
What does that mean for me as a PT?

- Aren’t these patients too sick?
- *Ambulatory* ECMO??
- PT implications

What does Research say?
Lung Transplant and Ambulatory ECMO

• Pre Transplant
 • IPF
 • Cystic Fibrosis

• Post Transplant
 • Primary Graft Dysfunction
Physical Therapy and ECMO

• Appropriateness for PT
• Plan of care
• Considerations and Safety Measures
• Center specific protocols
Appropriateness for PT

• Is the patient stable?
 • Vent settings.
 • Bleeding
 • Vital signs

• Communication with team is crucial
Plan of Care
Considerations and safety measures

- Cannulation sites
- Ambulatory team
- Equipment
- Unexpected outcomes
Cannulation Sites

• How do you secure those big cannulas so they don’t kink or dislodge?

• Any ideas?
Ambulatory team; the key players.

• Time for PT! Who needs to be there?
 – PT
 – ECMO clinician (perfusionist/RN/RT)
 – RT
 – RN
 – Extra hands! Rehab tech, CNA, RN
 – OOPS!...Let’s not leave out the docs!
 • Cardiothoracic surgeon
 • Intensivist/pulmonologist
 • Cardiologist
Equipment

• Treadmill
 – Safety precautions:

• Stationary Bike
 – Safety precautions:

• Walking with a walker/standing frame/walking frame
 – Safety precautions:

• Weights
Show me some action!

- video
SynCardia temporary Total Artificial Heart

Tina Fields, PT, MPT, CCS
University of Michigan Hospital
Email: chrifiel@med.umich.edu
What is the SynCardia Total Artificial Heart (TAH)

- A mechanical assist device for persons with biventricular heart failure.
- Switched from animal models to human implants early 1980s
- First BTT in 1985
- To date >1,350 implants worldwide.
- Replaces both native ventricles and all four heart valves.
- Pneumatic Device -- Pulsatile
- Successful bridge to transplant in 70-80% of cases depending on source of information.
Syncardia Total Artificial Heart Status

• 2004: The world's first FDA-approved Total Artificial Heart “for use as a bridge to transplant in cardiac transplant-eligible candidates at risk of imminent death from biventricular failure”

• 2008: Approved by the Centers for Medicare & Medicaid Services.
How it works

• Replaces all 4 valves & both ventricles:
 – 70cc ventricles (non compliant)
 – No inotropes, ECG, CPR, Defibrillation

• Pneumatic Device:
 – Airflow empties ventricles with each beat
 – External Console or Driver provides air supply and power to device when mobilizing the patient.

• Preload Dependent (goal CVP 5-10)
Candidates for TAH

- Candidates Include:
 - Patients with biventricular heart failure
 - Heart Transplant Candidate
 - BSA >1.7m2 (3D imaging to check size)
 - Must tolerate anti-coagulation

- Exclusions:
 - Ineligible for heart transplant
 - BSA<1.7m2
 - Unable to be anti-coagulated
 - Medically Unstable.
Risks of TAH

• Stroke (<2.5%)
• Infection
• Anemia (avoid transfusion)
• Bleeding (10-20% in first 24-48 hours)
• Cardiac Tamponade (can occur into recovery period)
TAH vs LVAD

• TAH:
 – Is not dependent on right heart function
 – No hemodynamic consequence from arrhythmias
 – Minimal device to blood contact – less risk of clotting
 – No issues with VSD
 – Cannot be explanted
 – Less oxygen demand (ventricles ~10%)
 – No surgical pocket required
TAH “Vital” Signs

• Heart Rate: fixed (120 to 135 bpm)
• BP: (goal SBP < 140)
• Oxygen Saturations: (92-100%)
• % Systole: fixed (50 to 60%)
• Vacuum: fixed (0 to -10)
• Stroke Volume: (50s-low 60s mL)
• Cardiac Output: Can be as high as 9.5L/min
Safety measures with TAH

- Ventricles should always partially fill
- Ventricles should always fully empty
- Battery Power check for transport
- Portable air tanks (~15 minutes per 1000psi)
- Avoid kinking or splitting of tubing
- No CPR or defibrillation
Thoughts for PT

- Immediate post-operative increase in Cardiac Output
- Sternotomy Precautions:
 - no lift/push/pull >10
 - full shoulder ROM
- Start PT POD#1 assuming hemodynamic stability.
- Monitor for partial fill & complete emptying
- Noise of device – sleep, constant reminder
- Stuck in hospital if don’t qualify for Freedom Driver
Patient Mobilization s/p TAH

• Multiple Team Players:
 – Console (skilled)
 – Portable Air Supply (prn)
 – Lines/oxygen
 – Wheelchair Follow (prn)
 – Physical Assistance for mobility
 – Assistive Device

• Progresssion = Aggressive
• Limitations
What is the Freedom Portable Driver?

• A wearable power supply and air compressor for the TAH
• It allows patients who are **medically stable** to leave the hospital s/p TAH implant.
• To qualify patients must tolerate the Freedom Driver settings.

• **2014:** The Freedom® portable driver received FDA approval on June 26, 2014
Patient s/p TAH implantation
Freedom Portable Driver

- Weighs 13.5 lbs
- Driveline = 5 feet
- Driveline Pressures Fixed
- % Systole Set (50%)
- Vacuum Set (-10)
- HR is only adjustable variable from 120-135.
Wearable: Backpack
Upcoming Trials

• Destination Therapy Trial:
 – Device avg implant time is 6 mo to 2 years

• 50cc Ventricle Trial:
 – Allow use for patients with BSA >1.1m² (female and pediatric patients)
 – Capable of producing 4.5-6 lpm

References

References

• www.syncardia.com